whycxzp
2022-05-30 76d39ee388b34c9b42a8dc1fbf88b506c9ce0054
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
package com.whyc.util;
 
import java.io.IOException;
import java.io.PrintStream;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.List;
 
import org.tensorflow.*;
import org.tensorflow.types.UInt8;
 
/** Sample use of the TensorFlow Java API to label images using a pre-trained model. */
public class LabelImage {
    private static void printUsage(PrintStream s) {
        final String url =
                "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
        s.println(
                "Java program that uses a pre-trained Inception model (http://arxiv.org/abs/1512.00567)");
        s.println("to label JPEG images.");
        s.println("TensorFlow version: " + TensorFlow.version());
        s.println();
        s.println("Usage: label_image <model dir> <image file>");
        s.println();
        s.println("Where:");
        s.println("<model dir> is a directory containing the unzipped contents of the inception model");
        s.println("            (from " + url + ")");
        s.println("<image file> is the path to a JPEG image file");
    }
 
    public static void main(String[] args) {
        test2(args);
 
    }
 
    private static void test2(String[] args){
        String exportDir = "F:\\tensorflow\\retrain\\saved_model\\";
        String imageFile = "F:\\tensorflow\\retrain\\test_images\\b1.jpg";
        String labelDir = "F:\\tensorflow\\retrain\\";
        SavedModelBundle model = SavedModelBundle.load(exportDir, "serve");
 
        List<String> labels =
                readAllLinesOrExit(Paths.get(labelDir, "output_labels.txt"));
        //readAllLinesOrExit(Paths.get(modelDir, "imagenet_comp_graph_label_strings.txt"));
        byte[] imageBytes = readAllBytesOrExit(Paths.get(imageFile));
 
        //对输入的图片进行处理
        Tensor<Float> image = constructAndExecuteGraphToNormalizeImage2(imageBytes);
        float[] labelProbabilities = executeInceptionGraph2(model, image);
        /*int bestLabelIdx = maxIndex(labelProbabilities);
        System.out.println(
                String.format("BEST MATCH: %s (%.2f%% likely)",
                        labels.get(bestLabelIdx),
                        labelProbabilities[bestLabelIdx] * 100f));*/
        for (int i = 0; i < labelProbabilities.length; i++) {
            System.out.println(
                    String.format("BEST MATCH: %s (%.2f%% likely)",
                            labels.get(i),
                            labelProbabilities[i] * 100f));
        }
    }
 
    /**
     * 原案例
     * @param args
     */
    private static void test(String[] args){
        if (args.length != 2) {
            printUsage(System.err);
            System.exit(1);
        }
        String modelDir = args[0];
        String imageFile = args[1];
 
        //byte[] graphDef = readAllBytesOrExit(Paths.get(modelDir, "tensorflow_inception_graph.pb"));
        //byte[] graphDef = readAllBytesOrExit(Paths.get(modelDir, "output_graph.pb"));
        //byte[] graphDef = SavedModelBundle.load("F:\\tensorflow\\retrain\\saved_model3", "serve").metaGraphDef();
        SavedModelBundle model = SavedModelBundle.load("F:\\tensorflow\\retrain\\saved_model3", "serve");
        List<String> labels =
                readAllLinesOrExit(Paths.get(modelDir, "output_labels.txt"));
        //readAllLinesOrExit(Paths.get(modelDir, "imagenet_comp_graph_label_strings.txt"));
        byte[] imageBytes = readAllBytesOrExit(Paths.get(imageFile));
 
        try (Tensor<Float> image = constructAndExecuteGraphToNormalizeImage(imageBytes)) {
        //try (Tensor<Float> image = constructAndExecuteGraphToNormalizeImage(model,imageBytes)) {
            float[] labelProbabilities = executeInceptionGraph(model.metaGraphDef(),image);
            int bestLabelIdx = maxIndex(labelProbabilities);
            System.out.println(
                    String.format("BEST MATCH: %s (%.2f%% likely)",
                            labels.get(bestLabelIdx),
                            labelProbabilities[bestLabelIdx] * 100f));
        }
    }
 
    private static Tensor<Float> constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {//把图片转换成inception需要模式
        try (Graph g = new Graph()) {//创建一个空的构造方法
            GraphBuilder b = new GraphBuilder(g);
            // Some constants specific to the pre-trained model at:
            // https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
            //
            // - The model was trained with images scaled to 224x224 pixels.
            // - The colors, represented as R, G, B in 1-byte each were converted to
            //   float using (value - Mean)/Scale.
            final int H = 224;
            final int W = 224;
            final float mean = 117f;
            final float scale = 1f;
 
            // Since the graph is being constructed once per execution here, we can use a constant for the
            // input image. If the graph were to be re-used for multiple input images, a placeholder would
            // have been more appropriate.
            final Output<String> input = b.constant("DecodeJpeg/contents", imageBytes);//DecodeJpeg/contents:0
            final Output<Float> output =
                    b.div(
                            b.sub(
                                    b.resizeBilinear(
                                            b.expandDims(
                                                    b.cast(b.decodeJpeg(input, 3), Float.class),
                                                    b.constant("make_batch", 0)),
                                            b.constant("size", new int[] {H, W})),
                                    b.constant("mean", mean)),
                            b.constant("scale", scale));
            try (Session s = new Session(g)) {
                // Generally, there may be multiple output tensors, all of them must be closed to prevent resource leaks.
                return s.runner().fetch(output.op().name()).run().get(0).expect(Float.class);
            }
        }
    }
 
    private static Tensor<Float> constructAndExecuteGraphToNormalizeImage2(byte[] imageByte) {
    Graph g = new Graph();
    GraphBuilder b = new GraphBuilder(g);
    // Some constants specific to the pre-trained model at:
    // https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
    //
    // - The model was trained with images scaled to 224x224 pixels.
    // - The colors, represented as R, G, B in 1-byte each were converted to
    //   float using (value - Mean)/Scale.
    //final int H = 224;
    final int H = 299;
    final int W = 299;
    //final int W = 224;
 
    //需要实际调试
    final float mean = 0.5f;
    //final float mean = 127.5f;
    //final float scale = 1f;
    //final float scale = 127.5f;
 
    final float scale = 1250f;
 
    // Since the graph is being constructed once per execution here, we can use a constant for the
    // input image. If the graph were to be re-used for multiple input images, a placeholder would
    // have been more appropriate.
    //final Output<String> input = b.constant("input",imageByte);
    final Output<String> input = b.constant("DecodeJpeg/contents",imageByte);
    final Output<Float> output =
            b.div(
                    b.sub(
                            b.resizeBilinear(
                                    b.expandDims(
                                            b.cast(b.decodeJpeg(input, 3), Float.class),
                                            b.constant("make_batch", 0)),
                                    b.constant("size", new int[] {H, W})),
                            b.constant("mean", mean)),
                    b.constant("scale", scale));
        // Generally, there may be multiple output tensors, all of them must be closed to prevent resource leaks.
        //return model.session().runner().fetch(output).run().get(0).expect(Float.class);
        Session s = new Session(g);
        return s.runner().fetch(output.op().name()).run().get(0).expect(Float.class);
    }
 
    private static float[] executeInceptionGraph(byte[] graphDef, Tensor<Float> image) {
        try (Graph g = new Graph()) {
            g.importGraphDef(graphDef);
            try (Session s = new Session(g);
                 // Generally, there may be multiple output tensors, all of them must be closed to prevent resource leaks.
                 Tensor<Float> result =
                         s.runner().feed("input", image).fetch("output").run().get(0).expect(Float.class)) {
                         //s.runner().feed("Placeholder:0", image).fetch("final_result:0").run().get(0).expect(Float.class)) {
                final long[] rshape = result.shape();
                if (result.numDimensions() != 2 || rshape[0] != 1) {
                    throw new RuntimeException(
                            String.format(
                                    "Expected model to produce a [1 N] shaped tensor where N is the number of labels, instead it produced one with shape %s",
                                    Arrays.toString(rshape)));
                }
                int nlabels = (int) rshape[1];
                return result.copyTo(new float[1][nlabels])[0];
            }
        }
 
    }
 
    private static float[] executeInceptionGraph2(SavedModelBundle model, Tensor<Float> image) {
 
            Session s = model.session();
            // Generally, there may be multiple output tensors, all of them must be closed to prevent resource leaks.
                 Tensor<Float> result =
                         //s.runner().feed("input", image).fetch("output").run().get(0).expect(Float.class)) {
                         s.runner().feed("Placeholder:0", image).fetch("final_result:0").run().get(0).expect(Float.class); {
                final long[] rshape = result.shape();
                if (result.numDimensions() != 2 || rshape[0] != 1) {
                    throw new RuntimeException(
                            String.format(
                                    "Expected model to produce a [1 N] shaped tensor where N is the number of labels, instead it produced one with shape %s",
                                    Arrays.toString(rshape)));
                }
                int nlabels = (int) rshape[1];
                return result.copyTo(new float[1][nlabels])[0];
 
        }
 
    }
 
    private static int maxIndex(float[] probabilities) {
        int best = 0;
        for (int i = 1; i < probabilities.length; ++i) {
            if (probabilities[i] > probabilities[best]) {
                best = i;
            }
        }
        return best;
    }
 
    private static byte[] readAllBytesOrExit(Path path) {
        try {
            return Files.readAllBytes(path);
        } catch (IOException e) {
            System.err.println("Failed to read [" + path + "]: " + e.getMessage());
            System.exit(1);
        }
        return null;
    }
 
    private static List<String> readAllLinesOrExit(Path path) {
        try {
            return Files.readAllLines(path, Charset.forName("UTF-8"));
        } catch (IOException e) {
            System.err.println("Failed to read [" + path + "]: " + e.getMessage());
            System.exit(0);
        }
        return null;
    }
 
    // In the fullness of time, equivalents of the methods of this class should be auto-generated from
    // the OpDefs linked into libtensorflow_jni.so. That would match what is done in other languages
    // like Python, C++ and Go.
    static class GraphBuilder {
        GraphBuilder(Graph g) {
            this.g = g;
        }
 
        Output<Float> div(Output<Float> x, Output<Float> y) {
            return binaryOp("Div", x, y);
        }
 
        Output<Float> holder(Output<Float> x, Output<Float> y) {
            return binaryOp("Placeholder:0", x, y);
        }
 
        <T> Output<T> sub(Output<T> x, Output<T> y) {
            return binaryOp("Sub", x, y);
        }
 
        <T> Output<Float> resizeBilinear(Output<T> images, Output<Integer> size) {
            return binaryOp3("ResizeBilinear", images, size);
        }
 
        <T> Output<T> expandDims(Output<T> input, Output<Integer> dim) {
            return binaryOp3("ExpandDims", input, dim);
        }
 
        <T, U> Output<U> cast(Output<T> value, Class<U> type) {
            DataType dtype = DataType.fromClass(type);
            return g.opBuilder("Cast", "Cast")
                    .addInput(value)
                    .setAttr("DstT", dtype)
                    .build()
                    .<U>output(0);
        }
 
        Output<UInt8> decodeJpeg(Output<String> contents, long channels) {
            return g.opBuilder("DecodeJpeg", "DecodeJpeg")
                    .addInput(contents)
                    .setAttr("channels", channels)
                    .build()
                    .<UInt8>output(0);
        }
 
        <T> Output<T> constant(String name, Object value, Class<T> type) {
            try (Tensor<T> t = Tensor.<T>create(value, type)) {
                return g.opBuilder("Const", name)
                        .setAttr("dtype", DataType.fromClass(type))
                        .setAttr("value", t)
                        .build()
                        .<T>output(0);
            }
        }
        Output<String> constant(String name, byte[] value) {
            return this.constant(name, value, String.class);
        }
 
        Output<Integer> constant(String name, int value) {
            return this.constant(name, value, Integer.class);
        }
 
        Output<Integer> constant(String name, int[] value) {
            return this.constant(name, value, Integer.class);
        }
 
        Output<Float> constant(String name, float value) {
            return this.constant(name, value, Float.class);
        }
 
        private <T> Output<T> binaryOp(String type, Output<T> in1, Output<T> in2) {
            return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
        }
 
        private <T, U, V> Output<T> binaryOp3(String type, Output<U> in1, Output<V> in2) {
            return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
        }
        private Graph g;
    }
}