package com.whyc.util;
|
|
import com.whyc.dto.Point;
|
|
public class PointUtil {
|
public static void main(String[] args) {
|
int[] x = {0, 8, 8, 0}; // 四边形顶点x坐标
|
int[] y = {0, 0, 8, 8}; // 四边形顶点y坐标
|
int px = 9, py = 9; // 待检测点坐标
|
|
if (isPointInQuadrilateral(px, py, x, y)) {
|
System.out.println("点在四边形内或边上");
|
} else {
|
System.out.println("点在四边形外");
|
}
|
}
|
|
/**
|
* 判断点是否在四边形内或边上
|
* @param px 待测点的x
|
* @param py 待测点的y
|
* @param x 四个点的x数组 四个点必须是顺时针顺序,从左下角开始顺时针
|
* @param y 四个点的y数组
|
* @return
|
*/
|
public static boolean isPointInQuadrilateral(int px, int py, int[] x, int[] y) {
|
int n = 4; // 四边形的边数
|
|
// 检查点是否在顶点上
|
for (int i = 0; i < n; i++) {
|
if (px == x[i] && py == y[i]) {
|
return true;
|
}
|
}
|
|
// 检查点是否在边上
|
for (int i = 0; i < n; i++) {
|
int j = (i + 1) % n;
|
if (isPointOnSegment(px, py, x[i], y[i], x[j], y[j])) {
|
return true;
|
}
|
}
|
|
// 使用射线法判断点是否在凸四边形内
|
int intersections = 0;
|
|
for (int i = 0; i < n; i++) {
|
int j = (i + 1) % n;
|
if (rayIntersectsSegment(px, py, x[i], y[i], x[j], y[j])) {
|
intersections++;
|
}
|
}
|
|
return intersections % 2 != 0;
|
}
|
|
private static boolean isPointOnSegment(int px, int py, int x1, int y1, int x2, int y2) {
|
// 检查点是否在x1, y1 和 x2, y2 形成的线段上
|
if (px < Math.min(x1, x2) || px > Math.max(x1, x2) || py < Math.min(y1, y2) || py > Math.max(y1, y2)) {
|
return false;
|
}
|
|
// 向量叉积
|
int crossProduct = (px - x1) * (y2 - y1) - (py - y1) * (x2 - x1);
|
|
// 向量点积
|
int dotProduct1 = (px - x1) * (x2 - x1) + (py - y1) * (y2 - y1);
|
int dotProduct2 = (px - x2) * (x1 - x2) + (py - y2) * (y1 - y2);
|
|
return crossProduct == 0 && dotProduct1 >= 0 && dotProduct2 >= 0;
|
}
|
|
private static boolean rayIntersectsSegment(int px, int py, int x1, int y1, int x2, int y2) {
|
// 确保 y1 <= y2
|
if (y1 > y2) {
|
return rayIntersectsSegment(px, py, x2, y2, x1, y1);
|
}
|
|
// 射线不与线段平行且点在y范围内
|
if (py > y1 && py <= y2) {
|
// 计算交点x坐标
|
//double xIntersection = (double) (px - x1) * (y2 - y1) / (double) (py - y1) + x1;
|
double xIntersection = x1 + (double) (py - y1) * (x2 - x1) / (y2 - y1);
|
|
// 射线从左到右,且交点在点的右侧
|
return xIntersection >= px;
|
}
|
|
return false;
|
}
|
}
|